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Abstract

The Frank-Wolfe Theorem stateés that a quadratic function, bLounded below
on a nonempty polyhedral convex set, attains its infimum there. This paper
gives sufficient conditions under which a function either attains its infimum
on a nonempty polyhedral convex set or is unbounded below on some halfline of

that set. Quadratic functions are shown to satisfy these sufficient conditions.




1. Introduction

The existence theorem for quadratic programming states that a quadratic
function Q bounded below on a nonempty polyhedral convex set C attains its
infimum there. This result was first proved in 1956 by Frank and Wolfe [1].
Alternative proofs have since been given by Collatz and Wetterling [2] (for the
case when Q 1is convex), Eaves [3] and Blum and Oettli [4].

Eaves [3] also improved on this result by showing that if Q does not
attain its infimum on C, then Q must be unbounded below on some halfline

contained in C. This was first claimed, but not proved, by Dennis in 1959 ([5].

2
1

In {1], the example Q(xl,xz) = + (l-xlxz)2 is given to show that these
results do not held in general for higher order polynomials. (Q here does not
attain its infimum, zero, in the plane.) This leads one to ask: what is so
special about a quadratic; and also perhaps, what is so special about polyhedral
convex sets. Unfortunately, the proofs in [1], [2], [3] and [4] are specifically
tailored to the quadratic and polyhedral case, and shed little light on the
answers to these questions.

In this paper we shall deal with the first question. Let ,;ﬁlbe the class
of all continuous functions f: R" +1R1 (some n) such that for any polyhedral
convex set C g;m“, f either attains its infimum or C or is unbounded be}ow
on some halftime contained in C. We shall define a class of functions yg*
which, in particular, contains all quadratic functions, and shall show that ,'é/

N
is contained (strictly) in /f%

2. Notation and Definitons

Let n denote {1,2,...,n}. For x € RY, a Cn, let X, € gK denote

) G N B

T
(x seres X ) where o = {al,...,a 1

k

ey




For A€ER , aCm 8Cn, let A, denote the row submatrix of A whose
rows are indexed by «a; let A'ﬁ denote the column submatrix of A whose

] s te A
colunns are indexed by B8; let AaB denote ( d')'B .

The symbol // will be used to denote the end of a proof.

A function f : R" » R 1is said to be norm-coercive if 1lim ]f(xk)l = o
koo
for every sequence {xk} (@ R" such that lim || ka = o,
ko

3. The class ,Zf and some examples

We define JLf by induction and the number of variables.

3.1 Definition: Let f : Rn > R1 be continuous. Then f € /t{ if there exists

a nonsingular matrix Q, and a partition of n, n = a U B, such that g : R" » R
defined by g(x) = £(Qx) satisfies
(i) if g # ¢ then g(xa, -) dis a concave function

() O 0 then g 1is norm-coercive

™
+H "

(iii) if o« * ¢ and B8 # § then for all A and b of appropriate

dimensions, the function h(+), defined by h(xa) = g(xu,Axa+b), is a
member of /9{
Note that for n = 1, condition (iii) is trivally satisfied since either
a or B must be empty. Hence a function of one variable, f, is in r&f e s

concave or if f 1is norm-coercive and continuous.

Note also that the induction step in the defn of ,;f is in condition (iii).

3.2 Examples

np
(i) All continuous norm-coercive functions are in,?7<
Set Q=1, a =n, 8= ¢ in Definition 3.1
(ii) All concave functions are in #bf

Set Q=1, a=0, 8 =n in Definition 3.1

(iii) All quadratic functions are in /b{




(iv) Any function of the form

where B is positive definite, D is positive semidefinite and

k>m>0, is in )Hz

h et —— . -

We shall prove this by induction on n, the number of

variables. Let

T

f(x) = ¢ x + leDx, x € rR".

2
If n=1 then f 1is either concave or f(x) » «» as le > 700,
and we are done.

Suppose the result is true for quadratic functions of

n~1 variables or fewer. Without loss of generality we may

assume that D is symmetric. Hence there is an orthogonal
matrix Q such that
™pq = piag (a 2
Q DQ g (Ayseeesd
where the Ai are the real eigenvalues of D.

Set d = QTc, and g(x) = f(Qx). Then

2 2
glx) = Z ()\ixi + dixi) + Z (Aixi + dixi)
Ai>0 Aiip

Let o ={i: ) >0} B=1{1i:2 <0} Then a and B partition
n, and g(x) clearly satisfies conditions (i) and (ii) of
Definition 3.1.

Also, since for any A and b, g(xa, Axa + b) 1is a

quadratic function in fewer variables, the induction hypothesis

applies and condition (iii) of Definition 3.1 is established.

f(u,v) = [uTBu]k - (VTDV)m

Set Q = I, and identify X, with u and xB with wv.

Since B 1is positive definite

' 2
x, Bx, > £]|x || Vox, (1)

where £ > 0 1is the smallest eigenvalue of B.




Since D 1is positive semi-definite, and the function
57
B

is convex

t" is nondecreasing in t > 0, (x DxB)m

in xB.
Hence conditions (i) and (ii) of Definition 3.1 are
satisfied.
Further, since D 1is positive semi-definite,

0 < xBTDxB < nl| XBHZ 4 Xy
where n > 0 is the largest eigenvalue of D. Thus for

any A and b

T
0 < (Ax_ + b) D(Ax_+ b)

2
n H Axa + b”

{A

(2)

[A

2
nGull x Il + |l blD
where p 1is the largest row norm of A.

Combining (1) and (2) we obtain

k 2k 2
ECxAx, +0) 2 & 1l x |7 - n @l x I+ [l 6"

The right hand side of this inequality is a polynomial in
lea|| with leading coefficient gk > 0. Hence
f(xa,Axa +b) >= as | xa|| + o, This establishes
condition (iii) of Definition 3.1 by an application of
example (i).

Remark: Example (iv) shows that the class,%%f is indeed interesting, that is,

] consists of functions to which the Frank-Wolfe theorem as it

stands is not applicable.




4. Preliminary results.

Let C be a nonempty polyhedral convex set of the form

c={x€R" : Ax > b}

where A € R™7",

4.1 Definition: Let x € C, and let y = {1i : A,, x = b, }. Then x is

called a pseudo-extreme point of C if x wuses linearly independent columns of

A ., d.e. 1E & = {j: xj¢0} then AY6 has full column rank.

For convenience, when A 1is the zero matrix, define the origin to be
the pseudo-extreme point of C.

One can easily show that C always has pseudo-extreme points. Furthermore,
it follows by Lemma 4.3 (stated below) that the extreme points of C, when they
exist, are pseudo-extreme points of C.

Ceometrically, the pseudo-extreme points of C are the extreme points of
all the sections of C at X, = 0 where « ranges over all subsets (including
the empty set) of n

In the following examples, the pseudo-extreme points are marked with

asteriscs. The set C 1is the shaded area.

xl) ; /—1)}

2

' X
(1) C={Xj : (“; "i)

X —-& 2

Fig. 1
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The following theorem shows that C has a representation in terms of its

pseudo-extreme points.

4.2 Theorem: C has a representation

Cl="{= -t tNsEERSIINERC P T >0 }

where S s nvex hull of the pseudo-extreme points of C, and 1T 1is the
intersect ! vhedral convex cone with the unit sphere.
To prove Lils result, we require 3 lemmas.

4.3 Lemma: Let x € C and let y = {i : A, x = bi}. Then x is an extreme

point af C iff the rark of A Is ‘.

4.4 Lemma: If C has extreme points then C has the representation

C={s+ut : 8€8, t €T, u > 0) where
S is the convex hull of the extreme points of C and T is the intersection

of a polyhedral convex cone with the unit sphere.

The proofs of these two lemmas can be found in Goldman [6].

&+ -
In the following, let x and x denote the positive and negative parts

of x, respectively.

u

4.5 Lemma: Let C = { e 0 : Au - Av < b}. Then x is a pseudo-extreme

+ i
point of C {if and only if (X } is an extreme point of C.

X

6




Proof: Ler x be a pseudo-extreme point of C. Let 7y = {1 : A X = bj}.

i-
. 1
Then since x wuses linearly independent columns of AY » x-) uses
. x L
linearly independent columns, say & C 2n, of the partitioned matrix (AY , —-AY i 3
Let B = (A, -A) and let I be the identity matrix of dimension 2n.
Then C can be written as
e Ju =Nty b
L L(VJ (v} o {O)}
where
s B
A1)
Thus the row submatrix of A corresponding to the constraints which -)
x

satisfies with equality is

B
Yo
IE'
where & denotes 20 w6
Rewrite this matrix as
BV5 BYE \)
0 133
Since By& and Ig§ both bave full column rank it follcows that
B
.YC
rank = 7n
T
Se.
+
X

By lemma 4.2 is an extreme point of C, and the first implication is

X

established.




The converse follows easily along similar lines. //

Proof of Theorem 4.2: Let C be as in the statement of Lemma 445

Since C has pseudo-extreme points, it follows by Lemma 4.5 that C has
extreme points.

Thus by Lemma 4.4 C has a representation
s A t! 3! et t! a2
S {(s") % u(t") : (SJ i {t") 2

where S 1is the convex hull of the extreme prints of E, and T 1is the
intersection ~f a polyhedral convex cone with the unit sphere.
Now C can be written as
C = {u-v : (u) & C)
v

Hence

(@]
il

{(s' = s8") + p(t'-t") : (zn (=278 (EL) o > 0}

Set

9]
]

{s'-s" : ':» =

Then by Lemma 4.5 S 1is the convex hull of the pseudo-extreme points of C.

Set

1= et S €T e -t 0
Then

Ca{st+ut t 8€8, tE€ET, u> 0}

as required.

Theorem 4.6: Let g : C *R be concave. Then either g attains its infimum

at a pseudo-extreme point of C or g is unbounded below on some halfline of C.

In 1961 Hirsch and Hoffman [7] proved a similar theorem using a different

representation of C. They decomposed C as

C=M®&L




o 1
where L 1is a linear subspace and M is the L - section of C, and showed
that a concave function bounded below on C attains its infimum at an extreme
point of M. 1In fig. 1 the extreme points of M are circled. Note that they

are not the same as the pseudo-extreme points of C.

Proof of Theorem 4.6:

Let {pl,...,pk} be the set of pseudo-extreme points of C.

Let

g(p_ ) = min g(p,)
T

Let S and T be as in Theorem 4.2.

k
For any s €S 3 A, >0, =71....k, z A, =1 such that
g, ey i
i=1
j
g = AP
£t
By the concavity of g,
k k
gls) = g( } A.p.) > J A.glp)
i=1 i1 i=1 a 1
Hence g(s) z_g(pm) VsEs. (1)

Now suppose that g does not attain its infimum at a pseudo-extreme point of

C.

Then by (1) 4 x€c\ S with

g(x) < glp )
By Theorem 4.2 x can be written as
X = s + ut

for some s €58, t €T, u > 0.

Since x € s, y > 0.




Further, the half-line

H={s+& : E>u}

is contained in C.

Now Ve>u

s+uc=(1—%)s+(§)(s+s:c).

Since g 1is concave

g(s +ut) > (1 - Pels) + Pals +5t) .

Upon rearrangement we get

g(s + £t) < g(s) - (BLEL= 5(8 L0 g

Since
g(s) - g(s + ut) > g(pm) - g(x) > 0
it follows that
g(s + £t) » - = as £ » o,

i.e. g 1is unbounded below on H.

The following result is of interest in its own right.
Theorem 4.7: Let g : R" > R, n > 2, be continuous and norm-coercive.
Then g 1is either bounded above or bounded below.

The proof of this result uses the concept of path connectedness.

/1

A set

D CR® 1is said to be path connected if for any x, y € D there is a continuous

mapping p : [0,1] » D such that p(0) = x and p(l) = y.

Let Kr denote the closed ball of radius r, and E; its complement. For

n> 2 Er is path connected.

10
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Proof of Theorem 4.7: By assumption on g, there exists r > 0 such that

x € Er = |g(x)| » 1. (1)
We shall show that either g(x) >1 Y x € kr ( glx) < -1 VYV xE€ fr.
3 "
If not, 3 x, y € K, 3 g(x) > 1 and g(y) < - 1. Since K_ 1is path
connected there is a continuous mapping p : [0,1] ~» Kr 3 p(0) = x p(y) =1

Since g 1is continuous, the mapping h : [0,1] » R defined bv

h(t) = g(p(t))

is continuous. Moreover h(0) > 1 and h(l) < - 1. By the intermediate value

theorem there exists to € [0,1] such that h(to) =0,

i.e. g(p(to) =0

Since p(to) € E; this contradicts (1).
Hence g 1is either bounded above or below on E;. Since Kr is compact and

g 1is continuous, g 1is bounded on Kr' //

The following theorem is obtained as a consequence of the above result.
Theorem 4.8: Let g : R" > R be continuous and norm-coercive.
Let P be any nonempty closed convex set. Then g either attains its infimum i
on P or is unbounded below on some half-line contained in P.

Proof: If g 1is bounded below on P, then

”x”-—>m’xep=’g(x)+m. 1
Thus for k sufficiently large the set |
R= {x: g(x) <k} NP
is nonempty and compact.
Since g 1is continuous g attains its infimum on R. The infimum of g on R |

is equal to the infimum of g on P and we are done.

11




Suppose g 1is unbounded below on P. Then since g is continuous, there is

a sequence {xn} CP3 g (xn) + - « and ”xnﬂ > o,
If n =1, one of the half-lines P N [- »,0], P N [0,#) will do. ‘
I[f n> 2, it follows by Theorem 4.7 that

x| »= x€P=gx)»--

Since any unbounded convex set contains half-lines, any half-line in P will do.

/]
4.9 Lemma: Let P(b) = {x : A x < b}. Then there is a finite collection
vy 8)) 1= Lyo..st} where v, Cm, 8, C n such that

Vb, x is a pseudo-extreme point of P(b) = there exists i € % such that

Yiéi i w1
o -1 5
(ii) A exists
Y.S,
i
1Ly = =0 where &, =n " 6,
i i — i

The proof is immediate from Definition 4.1 and will be omitted.

NG
7
5. Prooi of the main result: #] C_7'

The proof is by induction on the number of variables.

Let C be any non-empty polyhedral convex set defined by
C={x€R" : Ax < b}

mxn

where AER

o i
For n = 1, if f G,ﬂ then f 1is either concave or lf(x)l + ®© ag ;xl > o,

S e

In the former cazse, Theorem 4.6 applies. 1In the latter case, Theorem 4.8 applies.

Suppose the result holds for all k < n. Let f Eﬂ}/,f : R® =+ R,

Let Q, « and £ be as in definition 3.1. Since Q is nonsingular, it

suffices to prove the result for g defined by




g(x) = £(Qx)

on the set

where A = AQ.

If either a = ¢ or B = ¢, then g 1is either concave or norm-coercive
and we can use Theorem 4.6 or 4.8.

So assume a ¥ ¢, B ¥ ¢. Let {xk} = {(x:, xl;)} be a minimizing sequence
for g 1in the sense that g(xk)\l - o jf g 1is unbounded below on E, or
else

g(xk)\l inf {g(x) : x€C} =p > - = (say).
Now for each k, hold x:: fixed and solve

k
min g(xa,uB)

subject to uBG Ek ] {y : K.axx + K‘By < b}. Since g(x:, *) 1s concave,

we can apply theorem 4.6:

If g(x:, +) is unbounded below on C.

K then there is a half line

{s+ut : y >0} S—ék such that
k
g(xa,s+ut)+-w as u »> o,

i.e. g 1s unbounded below on the half-line

o)
F
=
=
|v
o
N
ol

and the result is proved.
Otherwise, Vk, g(x:. *) attains its infimum at a pseudo-extreme point

k -
W € Ck' By Lemma 4.9 there exists (Yi,éi) such that

13




A 7; exists (1)
Y4

o D where 6. =8 ~ §

Gi 1 ' i

Since the pair (xg,ug) is feasible

K o K
<b = X (2)
i Vg o g% n

where Y, =m" L

Since there are only finitely many such (Yi,Si) there is an infinite

subsequence K such that some (yi,éi) = (y,8) (say) 1is repeated for all k € K.

Using (1) to eliminate u: from (2) we get, Yk € K




1

Now since {(x:,xf)} is a minimizing sequence for g(+) on E, it follows
that {(xz,tﬁ)} is a minimizing sequence for g(+<) on C since by definition
of H?,
k k k _k
8(x sup) < 8(x »%;)

But (x ,u

8

for h(-<) on C where

k k k k v k
= = € s
o ) (xu, d qu) k K. Hence {xu}kek is a minimizing sequence

h(z) & g(z, d - Dz)

C=1{z: Bz <c}

all

We can now apply the induction hypothesis to h(:) on using condition
(1ii) of Definition 3.1 as follows:

If g 1is bounded below on C then

g(xz,x};)\) p as k > ®

so that

g(XZ’ d - Dxla() = h(x::)\: p as k -+ o, k ERK,

Hence there exists §& € C such that h(§a) = p d.e. g(;&, d - Bka) = p,

and we are done.

k
Otherwise g(xq,xlg) N - © so that h(zg)\l - o, k €EK, i.e. h(*)

N\

al

is unbounded below on C. Hence there exists a half-line {s + pt : u > 0} C
such that

h(s + Pt) ¥ - ® as U > ®

i.e. g(+) 1is unbounded below on the half-line

s t
{( ) + u{ ) S
d - Ds -Dt

in C. This completes the proof. /]

15
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6. Concluding Remarks

7 ¢ , g
We might ask questions about the structures of rJ and ’4.
(1) Neither is closed under addition

x2 -X x2 f’
e.g. let f(x) =e” +e ", g(x) =-¢e" . Then both f and g € ,¢¢

7
“~ (
but f + g $_ﬁ/ﬂ This example also shows that /C/is properly
-
contained in '/ .
27
(11) /%’is closed under arbitrary linear linear transformations of the variables
whereas xj is not.
7
To prove the first assertation, let f € /7, and let C = {x : Ax < b}.
We must show that f(Bx + d) has the required properties on C.
Let E = {(x,y) ¢ Ax Siby Y = Bxdk: d}. Since E is a polyhedral
convex set, its projection onto y space, TE is a polyhedral convex
set.
4383
inf{f(Bx + d) : x €EE} =p > - »
then !
inf{f(y) : v € ME} = p.
ap = y
Since f G‘/h, there exists y € m E such that f(y) = p

By definition of T7E there exists x € C such that y = Bx + d. Hence

f(By + d) = p, and we are done.
If f(Bx +d) 1is unbounded below then f(y) 1is unbounded on TE.

Hence 4 half-line H = {s + pt : 3.0} C nE  such that

f(y) » -« as |[[|y||] »=, y €H.

Define the linear map h : C » R" by

h(x) = Bx + d.

Then by linearity of h(*), h-l(H) is an unbounded convex subset

of €, and hence contains a half-line, G.

Thus f(Bx +d) » - » as ||x|| + », x € G, as required.

16




To show’ygfis not closed under arbitrary linear transformations of

the variables, consider

g
fix) = & € 4.

(y+2)2

The function f(y + z) = e is concave neither in y nor =z,

and along the ray y = - z, [f(y+z)| —/> =, i.e. f(y+z) ¢‘t%<

/)
Note that yg is however closed under nonsingular linear transformations

of the variables. This follows by definition of ;#5/.
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